Speeding up Tabular Reinforcement Learning Using State-Action Similarities (Extended Abstract)

نویسندگان

  • Ariel Rosenfeld
  • Matthew E. Taylor
  • Sarit Kraus
چکیده

One of the most prominent approaches for speeding up reinforcement learning is injecting human prior knowledge into the learning agent. This paper proposes a novel method to speed up temporal difference learning by using state-action similarities. These handcoded similarities are tested in three well-studied domains of varying complexity, demonstrating our approach’s benefits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speeding up Tabular Reinforcement Learning Using State-Action Similarities

One of the most prominent approaches for speeding up reinforcement learning is injecting human prior knowledge into the learning agent. This paper proposes a novel method to speed up temporal difference learning by using state-action similarities. These handcoded similarities are tested in three well-studied domains of varying complexity, demonstrating our approach’s benefits.

متن کامل

Tree Based Hierarchical Reinforcement Learning

In this thesis we investigate methods for speeding up automatic control algorithms. Specifically, we provide new abstraction techniques for Reinforcement Learning and Semi-Markov Decision Processes (SMDPs). We introduce the use of policies as temporally abstract actions. This is different from previous definitions of temporally abstract actions as we do not have termination criteria. We provide...

متن کامل

Time manipulation technique for speeding up reinforcement learning in simulations

A technique for speeding up reinforcement learning algorithms by using time manipulation is proposed. It is applicable to failure-avoidance control problems running in a computer simulation. Turning the time of the simulation backwards on failure events is shown to speed up the learning by 260% and improve the state space exploration by 12% on the cart-pole balancing task, compared to the conve...

متن کامل

Leveraging Human Knowledge in Tabular Reinforcement Learning: A Study of Human Subjects

Reinforcement Learning (RL) can be extremely effective in solving complex, real-world problems. However, injecting human knowledge into an RL agent may require extensive effort on the human designer’s part. To date, human factors are generally not considered in the development and evaluation of possible approaches. In this paper, we propose and evaluate a novel method, based on human psychology...

متن کامل

Speeding Up HAM Learning with Internal Transitions

In the context of hierarchical reinforcement learning, the idea of hierarchies of abstract machines (HAMs) is to write a partial policy as a set of hierarchical finite state machines with unspecified choice states, and use reinforcement learning to learn an optimal completion of this partial policy. Given a HAM with potentially deep hierarchical structure, there often exist many internal transi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017